当前位置:首页 > 教学资源

七年级数学上册教案

时间:2024-11-27 02:12:17
七年级数学上册教案[本文共6444字]

第一课时:整式(1)

教学目标和要求:

1.理解单项式及单项式系数、次数的概念.

2.会准确迅速地确定一个单项式的系数和次数.

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.

教学过程:

一、复习引入:

1、列代数式

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

2、请学生说出所列代数式的意义.

3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

由小组讨论后,经小组推荐人员回答,教师适当点拨.

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,

如a,5.

2.练习:判断下列各代数式哪些是单项式?

(1); (2)abc; (3)b2; (4)-5ab2; (5)y;(6)-xy2; (7)-5.

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以

四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

单项式的系数:单项式中的数字因数叫做这个单项式的系数.

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4.例题:

例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-,次数是3.

例2:下面各题的判断是否正确?

①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab 3c2的次数是0+3+2;

④-a3的系数是-1;⑤-32x2y3的次数是7; ⑥πr2h的系数是.

答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3 = 5;⑥正确

强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“ 1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关.

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

三、课堂小结:

①单项式及单项式的系数、次数.

②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.

教学后记:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

第二课时:整式(2)

教学目标和要求:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

3.初步体会类比和逆向思维的数学思想.

教学重点和难点:

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

难点:多项式的次数.

教学过程:

一、复习引入:

观察以上所得出的四个代数式与上节课所学单项式有何区别.

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

二、讲授新课:

1.多项式:

由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constant term).例如,多项式3x2?2 ……此处隐藏2301个字……上周五以收盘价买进股票1000股,每股20元.下表为本周每日股票的涨跌情况(按

(2)本周内,股票最高价出现在星期几?是多少元?

(3)已知小钱买进股票时付了4‰的手续费,卖出时又付成交额4‰的手续费和3‰的交易税,如果小钱在本周末以收盘价卖出全部股票,他的收益如何?

9.小京同学在计算16+(-24)+22+(-17)+(-56)+56时, 利用加法交换律、结合律先把正负数分别相加,得16+22+56+[(-24)+(-17)+(-56)].你认为这样算能使运算简便吗?你认为还有其它方法吗?

10.用简便方法计算:

(1)1033.78+(-26)+(-39)+(-38); (2)12.7+(-24.6)+(-29.1)+6.8;

(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7; (4)(-109)+(-267)+(+108)+268;

第五篇:人教七年级数学上册教案人教版-1.3.1有理数的加法(2)

1.3.1有理数的加法(2)授课时间:____________

【教学目标】

1.进一步理解有理数加法的实际意义;

2.经历探索有理数加法法则的过程,理解有理数加法法则;

3.感受数学模型的思想;

4.养成认真计算的习惯.

【对话探索设计】

〖探索1〗

1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动,再向左运动, 那么两次运动后总的结果是什么?

假设原点为运动起点,用数轴检验你的答案.

〖法则理解〗

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________. 这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案"-8"之所以取"-"号,是因为______________,"8"是由_____的绝对值和______的绝对值相______而得. 〖练习〗

1.上午6时的气温是,下午5时的气温比上午6时下降, 下午5时的气温是多少?

2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?

3.第一天向北走,第二天又向北走,两天一共向北走多少km?

4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

(1)-10+(-30)=

(2)(-100)+(-200) =

(3)(-188)+(-309)=

〖探索2〗

1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3.正数和负数相加,结果是正数还是负数?

〖法则理解〗

有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.

例如(+6)+(-2) = +(6-2) = +4.答案"+4"之所以取"+"号,是因为两个加数(+6与-2)中________的绝对值较大;答案"+4"的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.

又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.

〖议一议〗

有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对?

〖练习〗

1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?

2.如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

-3.5,+1.2,-2.7.

这3包洗衣粉的重量一共超过标准重量多少?

4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:

(1)(-3)+(+8)=

(2)-5+(+4)=

(3)(-100)+(+30)=

(4)(-100)+(+109)=

〖法则理解〗

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.

例如(+3)+(-3) = ______,(-108)+(+108) = ______.

〖例题学习〗

p21.例1,例2

p22.练习2(按例1格式算.)

〖作业〗

p29.习题 1, p32.习题 8,9,10

【备选素材】

用一个□表示+1,用一个■表示-1.显然□+■=0,

(1)■■+□□□=(■+□)+(■+□)+ □=_____.

这表明-2+3=+(3-2)=1.

想一想:答案为什么是正的?为什么转化为减法运算?

(2)计算■■■■■+□□□□□=_____.

(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.

这说明-5+(+2)=-(___-___)=_______.

(4)计算■■■+□□□□□=?

adiwan小编推荐其他精彩范文:

人教七年级数学上册教案人教版-1.4.1 有理数的乘法(1)

人教七年级数学上册教案人教版-1.3.1有理数的加法(1)

人教七年级数学上册教案人教版-1.2.1 有理数

人教版七年级数学上册教案之有理数的乘除法

人教版七年级数学上册教案之整式的加减法

《七年级数学上册教案[本文共6444字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式